下面是小编为大家整理的小数的性质教学设计中设计意图,仅供大家参考借鉴,希望大家喜欢!如果这12篇文章还不能满足您的需求,您还可以在本站搜索到更多与小数的性质教学设计中设计意图相关的文章。
设计理念:
【资料图】
数学课程标准指出,数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。教师应激发学生的学习积极性,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法。基于这样的教学理念,在设计本节课时,我努力从现实生活中寻找数学的素材,引导学生进行观察、比较、猜想、用各种方法验证(应用小数的意义,通过画图法来论证;也可以借用小数数位顺序表,根据数的组成来论证;还可用赋以单位名称的方法,进行名数转化,再加以比较,从而得出结论)。在多种方法论证的扩展中突破难点,使学生认同最后结论。 教学目标:
1、能说出小数的性质并能对小数的性质作出合理的解释。
2、在总结归纳小数性质的过程中,通过猜测、验证、观察、类比等方法,发展学生初步的合情推理能力。
3、体验数学与生活的紧密联系,数学问题的探究性和挑战性,感受透过现象看本质的过程。 教学重点:
理解小数的性质 教学难点:
理解小数的性质
1 教学准备:
课件、平均分好的正方形、纸条 教学过程:
一、谈话引入
同学们喜欢逛超市吗?你留意到标价牌了吗?
课件出示两种商品的标价,学生读出价钱,并说出小数的含义。
(2.50元
3.00元)
师:你还能用其他小数表示商品价钱吗?
生:2.50元还可表示成2.5元,3.00元还可表示成3.0元或3元。
师:2.50元和2.5元什么关系?(相等?3.00元和3.0元3元什么关系(相等),你知道为什么吗?这只因为小数有一个重要性质。
二、探究新知
1、师出示一张纸条,同学猜长度(1分米)你还能用其他形式表示纸条的长度吗?
同学们想出了这么多使它们相等的方法,真不简单。老师这里还有三个数,看它们相等吗?(课件出示0.1米、0.10米、0.100米。
当学生提出不同的猜想之后,老师请各小组同学拿出准备好的0.1米、0.10米、0.100米的纸条,分别量出它们的长度,小组同学分工进行,然后组长组织进行比较。
小组汇报的时候老师提出这样几个问题:
2 1)比较的结果是什么?(纸条都相等)
2)每张纸条表示的是多少?可以用哪个比米小的单位来表示?并分别在米尺上指出其长度。
3)在以前的学习中我们已经知道了1分米=10厘米=100毫米,如果没有纸条,你能说说0.1米、0.10米、0.100米,它们为什么相等吗?
4)从左往右?观察这个等式,你发现了什么?从右往左呢?根据你两次的发现,可以得出一个什么结论? (小数的末尾添上0或去掉0,小数的大小不变。)
2、普遍探究、得出结论
1)是不是所有小数都具有这样的特点呢?请同学们自己随意写出一个小数,在它的末尾添上0或者去掉0,选择自己喜欢的办法验证一下,他们的大小是否不变?如果需要的话,你可以选择课前准备好的数位顺序表、平均分好的正方形等来帮助你验证。(学生可能会写出许多不同的数。)
2)学生活动(预想学生可能会采用的验证方法)
a、画图法
如利用正方形图验证:0.30=0.3 ,0.3=0.30 ,通过涂色,明显看出0.30=0.3
b、借用小数数位顺序表, 从小数的意义入手来说明0.30 = 0.3
c、给小数赋以单位名称,进行单位间转化来说明理由
3 3)把学生写出的不同小数、验证的不同方法充分展示出来,以得到学生的广泛认同。
4)这么多组不同的但是都相等的小数向我们解释出了小数中存在的一个普遍规律是什么?(学生总结:在小数的末尾添上0或者去掉0,小数的大小不变),这个规律我们就称它为小数的性质。
5)引导学生比较:在整数的末尾添上或去掉“0”,整数的大小会有什么变化?在小数的末尾添上“0”或者去掉“0”,小数的大小又会有什么变化?
3、应用
(1)教学例3:把0.70和105.0900化简.
思考:哪些“0”可以去掉,哪些“0”不能去掉?
105.0900中“9”前面的“0”为什么不能去掉?
(0.70=0.7;105.0900=105.09)
(2)教学例4:不改变数的大小,把0.
2、4.0
8、3改写成小数部分是三位的小数.
(0.2=0.200;4.08=4.080;3=3.000)
思考:“3”的后面不加小数点行吗?为什么?
(3)你在哪些地方看到过小数末尾添0的数?(商场的标价上)
三、巩固练习.
1、下面的数,哪些“0”可以去掉,哪些“0”不能去掉?
3.90 0.300 1.8000 500
5.780 0.0040 102.020 60.06
重点指导学生说一说为什么有些“0”不能去掉的.
2、下面的数如果末尾添“0”,哪些数的大小不变,哪些数的大小有变化?
3.4 18 0.06 700 3.0
908 104.03 150 10.01 42.00
重点指导学生说一说为什么有些数的末尾添上“0”,原数就发生了变化.
3、把相等的数用线连起来.
重点指导学生说一说为什么有些数近似却不相等.
4、判断.
(1)在一个数的末尾添上0或者去掉0,数的大小不变;
(2)在小数点的后面添上0或去掉0,小数的大小不变;
(3)在小数的末尾添上或去掉0,小数的大小不变;
(4)把小数中的0去掉或者在小数中添上0,小数的大小不变;
四、课堂小结
这节课学习了小数的性质,小数的末尾添上“0”或者去掉“0”,小数的大小不变。
板书设计:
小数的性质
1分米=10厘米=100毫米
0.1米=0.10米=0.100米
小数的末尾添上“0”或去掉“0”,小数的大小不变。
《小数的性质》是九年义务教育六年制小学数学第八册第四单元第2小节“小数的性质和小数的大小比较”的内容。本课为这一小节第1课时,教学P58-59页例1-例3,完成“做一做”及练习十的第1-3题。
教学目标
1、借助实物和直观图,使学生理解和掌握小数的性质,会应用小数的性质把一个小数化简和把一个数改写成指定位数的小数。
2、通过小数性质的概括,培养学生的抽象、概括能力。通过应用小数性质,培养学生应用所学知识,解决实际问题的能力。
3、通过理解小数的性质,渗透“变”与“不变”的辩证思想。
教学重、难点
重点:小数性质的推导和理解,真正掌握并正确运用这一性质解决问题。 难点:掌握在小数部分什么位置添“0”去“0”,小数大小不变。
教具准备
一米长直尺,小黑板。
教学过程
(一)情景导入,激趣揭题。
通过引入商店购物情境,对于价格标签上常常标注的2.5元和2.50元,提问学生会去买哪一个?引入小数的性质。(板书:小数的性质)
【设计意图】这样的设汁,旨在把枯燥的数学知识贯穿在小学生喜闻乐道的故事中,引发起学主的学习兴趣,点燃他们求知欲望的火花,从而进入最佳的学习状态,为主动探究新知识聚集动力。
(二)学习新知,理解掌握。
1、教学例1。
(1)1米=10分米=100厘米=1000毫米
1分米是几分之一米?→1/10米(把1米平均分成10分,取其中的1份)→1分米=0.1米 10厘米是几分之几米?→10/100米(把1米平均分成100分,取其中的10份)→10厘米=0.10米
100毫米是几分之几米?→100/1000米(把1米平均分成1000分,取其中的100份)→100毫米=0.100米
(2)因为1分米=10厘米=100毫米(直尺直观演示,看出长度相等。) 所以0.1米=0.10米=0.100米(多请几个学生说一说)
【设计意图】这样,学生根据小数的意义,主动从“0.l米、0.10米、0.100米”出发研究问题。在问题得以解决的过程中,学生锻炼了运用已有知识解答新问题的能力,培养了运用数学知识的意识。是小数意义的运用,而不是简单的重复,因而是有意义学习。
(3)观察得出小数的性质
①这三个数从左往右有什么变化?(小数的末尾添上0,小数的大小不变) ②这三个数从右往左有什么变化?(小数的末尾去掉0,小数的大小不变) ③你发现了什么规律?(合二为一)
小数的末尾添上或者去掉0,小数的大小不变。这就是小数的性质。(点题) 【设计意图】这样教学,把静态的知识结论转化动态的求知过程,让学生真正成为学习的主人,对所学的内容理解深刻,记忆牢固,不但知其然,而且知其所以然。同时,还培养了学生归纳概括事物本质属性的能力。
(4)练习:
①辨别下面各数中的“0”,哪些“0”是属于小数末尾的“0”。(按数位说) 0.080 0.60300 500.00000 ②58页做一做。(学生在书上练) 【设计意图】这样使学生的思维从形象思维逐步过渡到抽象思维,达到突破难点的目的,同时,通过看书交流,培养了学生的自学能力和合作意识。
(三)研究性质,灵活化简。
在实际生活中我们可以根据需要,有时要把某些小数化简,有时则要把某些小数改写成含有指定小数位数的小数。怎样才能满足这些需要呢?请大家带着这两个问题自做下面两道题:
1、教学例2:化简下面的小数。 0.70= 105.0900= 10.000= 练一练:59页做一做1。
2、教学例3:不改变数的大小,把下面各数写成三位小数。 0.2= 4.08= 3=
(注意:整数的个位右下角点上小数点,再添0。) 练一练、59页做一做2。
3、探究练习。
(1)0.70去掉末尾的0大小有变化吗?
4.08去掉0会怎样? 0.31可以填0吗?
(2)小结:添“0”或去“0”只能在小数部分的末尾。
(四)专项练习,巩固提高。
1、64页1题。
2、判断理解:(“末尾”能否说成“小数点的后面”?)
①把0.500.0600的小数点后面的“0”去掉,小数的大小不变。( ) ②在5.3的末尾添上三个“0”,它的大小不变。( ) ③一个数末尾添上“0”或者去掉“0”,大小不变。( )
3、64页第3题。(课本练习)
4、拓展练习。
(1)你能在下面三个数中各点一个小数点使它们相等吗?试试看,相信你一定行。
6020 602 60200 (2)试试看你能写几个与30.200相等的数。
【设计意图】这是教学中不可缺少的环节,这一阶段是学生巩固知识,形成技能,技巧,发展智力的重要过程。在这一阶段,特别是抓住学生的求胜心理进行了练习、进一步激发学生的学习兴趣,让学生有了思考的方向,为探究和提炼改写规定小数部分位数的方法提供了很好的方法指导,同时也为各个能力阶段的孩子提供了自主探究的空间和机会。确保学习任务的圆满完成。
(五)全课小结。
(1)这节课你有哪些收获? (2)你对自己或同学有什么评价?
(六)作业布置。
(1)化简下列小数。 0.50 25.300 0.0090 108.000 (2)不改变数的大小,按要求改写下列小数。 1.5改写成两位小数是______ 29.5改写成三位小数是_____ 8.0改写成三位小数是______ 0.400改写成一位小数是______ 12改写成四位小数是______ 板书设计
小数的性质
1米=10分米=100厘米=1000毫米
1分米=_____分之_____米=_____米(小数) 10厘米=_____分之_____米=_____米(小数) 100毫米=_____分之_____米=_____米(小数)
1分米=10厘米=100毫米 0.1米=0.10米=0.100米 0.1=0.10=0.100 0.30=0.3 小数的末尾添上“0”或者去掉“0”,小数的大小不变,这叫做小数的性质。
教学内容:
义务教育课程标准实验教科书(西南师大版)四年级(下)练习十六第3~11题。
教学目标:
1进一步掌握小数点位置的移动引起小数大小的变化。
2能根据要求正确移动小数点的位置。
3感受数学知识的严谨,养成认真、仔细的习惯。
教学重点:
进一步掌握小数点位置的移动引起小数大小的变化。
教学难点:
根据要求正确移动小数点的位置。
教学过程:
一、基本练习
1小数点位置移动引起小数大小变化的规律是什么?
2练习十六第3题。
学生独立看懂表格,注意找准整数的小数点位置,并指名让学生说说他们的方法。
二、指导练习
1第8题
老师针对不同的学生进行指导。
第9题请同学们先汇报收集的资料,再算一算。
3第10题
注意两种情况:一是宽边相接,按长边计算;二是长边相接,按宽边计算。
三、独立练习
1练习十六第4,5题教师强调:写得数时注意位数不够用“0”补足。
2学生独立完成第6,7题
四、拓展练习
练习第11题。
引导学生思考:两个因数同时缩小10倍、100倍、1000倍,由此引起的积的变化。
五、小结
哪些同学愿意谈谈今天的收获?
小数的意义
第一课时
教学内容:
义务教育课程标准实验教科书(西南师大版)四年级(下)第69~72页例1、例2和课堂活动第1,3,4题。
教学目标:
1让学生结合现实情境,进一步认识小数及小数的计数单位,理解相邻两个计数单位的十进关系。
2通过直观、操作、推理等活动,让学生清楚、明确地归纳小数的意义。
4感受数学与生活的紧密联系,体会小数在日常生活中的作用。
教学重点:
结合现实情境,认识小数及小数的计数单位。
教学难点:
理解小数的意义及十进关系。
教学准备:
米尺、直尺等。
教学过程:
一、引入新知
1量一量黑板的长,课桌长、高
这些数是不是都是整米数?
教师:在测量和计算中,有时得不到整数的结果,通常可以用小数表示。
2回忆、练习
1角=10元=()元5角=()10元=()元1dm=()10m=()m3dm=()10m=()m
教师:数,同学们还想知道什么?
板书课题:小数的意义
二、探索新知
1教学例1
(1)填一填,说一说。
(出示例1第1个图)
①此图用分数、小数该怎样表示?你是怎样想的?
说一说:07表示把一个正方形平均分成()份,取其中()份。
07里面有()个0.1。
②像0.1,0.3,0.5,0.7这些一位小数,都表示把一个整体平均分成10份,分别取其中的1份、3份、5份、7份,也就是:一位小数表示十分之几。
(2)同理说一说。(后面两幅图)
①第1个涂一个小格,第2个涂45个小格,用分数、小数来表示并说说是怎样想的?
②讨论并归纳:百分之几写成几位小数?两位小数表示几分之几?
2教学例2
(认识三位小数)
(1)看一看,填一填。
①把1m平均分成10份,其中1份是1dm;平均分成100份,其中1份是1cm;平均分成1000份,其中1份是1mm。
(出示图)学生填分数和用小数表示。
1mm=()1000m=()m;146mm=()1000m=()m②把一个正方体平均分成1000份。
(第70页例2图)其中1份、25份,107份用分数和小数怎样表示?
(2)说一说0.025,0.107分别表示什么以及它们的组成。
(3)归纳:表示千分之几写成几位小数?三位小数表示几分之几?
3讨论、归纳小数的意义
学生讨论:什么是小数?小数的计数单位有哪些?
归纳:像0.7,0.45,0.025,0.25,0.107……这样表示十分之几、百分之几、千分之几……的数叫小数。0.1,0.01,0.001……就是小数的计数单位。每相邻两个计数单位间的进率是“10”。
学生自学数位顺序表。
三、课堂活动
完成课堂活动第1,3,4题。
先学生独立完成,集体评议,让学生说说是怎样想的?
四、课堂小结
本节课学会了什么?还有什么困难?
板书设计:
小数的意义
一位小数表示十分之几。
两位小数表示百分之几。
三位小数表示千分之几。
每相邻两个计数单位间的进率是“10”。
0.1,0.01,0.001……就是小数的计数单位。
教学内容:
苏教版五年级上册p34――35例5、例6,“试一试”、“练一练”,练习六1―5题。
教学目标:
1、理解并掌握小数的性质;
2、能运用小数的性质进行小数的化简和改写;
3、培养学生对所学知识的归纳概括,分析综合及灵活运用的能力。
教材的重点:
通过探索,发现小数的性质,运用小数的性质解决相关问题。
教学难点:
对小数的性质这一概念的理解是本节的难点。
教学过程:
一、导入新课
在商店里,经常把商品的标价写成这样的小数:手套每双2.50元,毛巾每条3.00元。这里的2.50元、3.00元分别是多少钱?(2.50元是2元5角,3.00元是3元)为什么能这样写呢?这是小数的一个重要性质,是我们今天要学习的内容,并板书“小数的性质”。
二、学习新知
1、研究小数的性质
(1)(板书“1”)师:在“1”的末尾依次添上1个“0”、2个“0”,数的大小变化了吗?怎么变?你能不能在括号里填上合适的单位名称,使下面的等式成立。
1( )=10( )=100( )
得出:1元=10角=100分
1米=10分米=100厘米
1分米=10厘米=100毫米
出示米尺,1分米是1/10米,可写成怎样的小数?(0.1米);10厘米是10个1/100米,可写成怎样的小数?(0.10米),100毫米是100个1/1000米可写成怎样的小数?(0.100米)
板书:因为1分米=10厘米=100毫米
所以0.1米=0.10米=0.100米
师:0.1、0.10、0.100是否相等?为什么?
(板书:0.1=0.10=0.100)
a、从左往右看,是什么情况?(小数的末尾添上“0”,小数大小不变)
b、从右往左看,是什么情况?(小数的末尾去掉“0”,小数大小不变)
c、由此,你发现了什么规律?(小数的末尾添上“0”或去掉“0”,小数大小不变)
(2)出示:0.3元、0.30元师:这两个数相等吗?说出理由。(学生交流,教师适时适当地引导)
(3)让学生在两张同样大小的正方形纸上(其中一张均分为100格,一张均分为10格)表示出0.30、0.3,比较其大小,说明30个1/100就是3个1/10,0.30=0.3
(4)师:如果在它们的末尾添上两个“0”呢,三个“0”呢?相等吗?为什么?
(5)0.3添上“0”成0.03,大小有没有变化?为什么?
(6)引导学生归纳出小数的性质。
2、小数性质的应用
师:根据这个性质,遇到小数末尾有“0”的时候,一般可以去掉末尾的“0”,把小数化简。
(1)化简小数
出示例6:提问:价格表上的哪些“0”可以去掉?
提问:这样做的根据是什么?弄清题意后,学生回答,教师板书:2.80=2.8 4.00=4 10.50=10.5
(2)把整数或小数改写成指定数位的小数
师:有时根据需要,可以在小数的末尾添上“0”;还可以在整数的个位右下角点上小数点,再添上“0”,把整数写成小数的形式。
如:2.5元=2.50元 3元=3.00元
(3)做“试一试”
0.4=0.400 3.16=3.160 10=10.000
练习:口答“练一练”第2题。
讨论小结:改写小数时一定要注意下面三点:
a、不改变原数的大小;
b、只能在小数的末尾添上“0”;
c、把整数改写成小数时,一定要先在整数个位右下角点上小数点后再添“0”。(想一想为什么)
三、巩固练习
练一练
第1题:学生先独立做,再校对,说说为什么。
第2题:先涂色,再比较。根据小数的意义说一说。
练习六
第1题:口答,说说为什么。
第2题:把相等的数用线连起来,先在书
上填好后,再提问找朋友。一个同学在第一栏里按顺序报数,其他同学准备当朋友。
第3题(左边4题):化简下面小数,采取抢答来完成。
第4题(左边4题):先独立做再口答订正。
第5题:用元作单位,把下面的钱数改写成两位小数。2人板演,其余学生齐练,评价鼓励。
四、课堂作业
练习六3和4(右边4题)
教学反思:
在教学时,我首先通过联系学生的生活实际,让学生感知商品的价格,引入新课揭示并板书课题。教学例题时,我没有直接出示例6而是先在黑板上写了三个1。提问:这三个1中间可以用什么符号连接?创设这样一个问题情境,让学生回答。接着,我在第二个1后面添上一个“0”成10,在第三个1后面添上两个“0”成100。问:现在这三个数还能用等号连接吗?(不能)师:你能想办法使他们相等吗?这问题情境的创设立即引起了学生们的好奇。这个富有启发性、趣味性、挑战性的问题吸引着学生,引起了他们强烈的探索欲望,使他们情不自禁地注入自己的热情成为学习的主人。他们注意力迅速高度集中,纷纷开动脑筋、个个跃跃欲试。通过大家的回答和教师的评判不知不觉引入新课的学习,自然流畅。这样设计有利于引导学生根据小数的意义出发研究新问题是小数意义的运用。接着通过观察米尺,引导学生得出0.1=0.10=0.100。让学生从左往右看,是什么情况?再从右往左看,是什么情况?发现了什么规律?引导学生找出规律:小数的末尾添上“0”或去掉“0”时,小数的大小不变。接着让学生用手中的学具验证:0.3=0.30,再次理解并掌握小数的性质。
这节课,以学生找规律、验证规律、应用规律,环节清晰。但是正如所有的课一样有优点也有缺点,反思下来我觉得本节课中教师还是讲得多了一些,因此留给学生巩固练习时间少了一些。因此,在今后的教学中,要体现以学生为主体,让学生充分发表自己的意见,大胆地说出自己的想法。
教学目的:
1.利用迁移规律,让学生从形象思维逐步过渡到抽象思维,通过直观推理、自主探究、合作交流让学生理解和掌握小数的性质,提高学生运用知识进行判断、推理的能力。
2、初步理解小数的基本性质,并应用性质化简和改写小数。
3.让学生体验数学问题的探究性和挑战性,激发学习数学的兴趣,主动参与教学活动。
教学重点:
掌握小数性质的含义。
教学难点:
小数性质归纳的过程。
教学过程:
一、谈话导入、课前质疑
1、填空
1米=( )分米 1米=( )厘米 1米=( )毫米
2、我们在商店里看到的标价一般是这样的:手套: 毛巾:(课件演示)
提问:2.50元、3.00元各是多少钱呢?(2元5角、3元)
2.5 和2.50都表示2元5角吗?3和3.00相等吗?
引入:为什么会相等呢?这就是今天这节课我们要学习的内容。 “小数的性质”(板书课题)
二、探究新知、课中释疑
1.教学例1。
(1)课件出示1分米、10厘米、100毫米的线段图。
请比较一下它们的大小。学生略加思考后马上提问,要求说说你是怎么知道的。演示:重合法比较1分米、10厘米、100毫米的大小。
板书并演示:1分米=10厘米=100毫米
(2)导入例1:
你能把它们都写成用米做单位的小数的形式吗?必须体现它们的原先单位。
1分米= ( )米 10厘米=( )米 100毫米=( )米
根据学生回答归纳演示:1分米是米,写成0.1米
10厘米是10个米,写成0.10米
100毫米是100个米,写成0.100米
并板书:0.1米 0.10米 0.100米
那0.1米、0.10米、0.100米之间大小有什么关系呢?
学生很快回答后课件演示。并在他们之间加上等号。
我们还可以用重合法比较一下。(课件演示)
(3)指导看黑板:
1分米 = 10厘米 = 100毫米
0.1米 = 0.10米 = 0.100米
提问:这说明了什么问题?
请大家仔细观察这个等式,可以从左往右看,再从右往左看,什么变了?什么没变?在什么地方多(少)0?在这个小数的什么位置?多(少)0还可以怎么说?
末尾添上“0”
根据学生回答逐一板书:
小数 0.1米=0.10米=0.100米 大小不变
末尾去掉“0”
小结:小数的末尾添上0或去掉0,小数的大小不变。这就是小数的性质。
三、巩固运用、交流反思
强调:我们如果遇到小数末尾有“0”的时候,一般可以去掉末尾的“0”,把小数化简.
(1)比较0.30和0.3的大小。(用你喜欢的颜色在课本上分别表示出0.30和0.3)。
(2)出示例2:把0.70和105.0900化简。
思考:哪些“0”可以去掉,哪些“0”不能去掉?
(1)提问:0.70你认为可以怎么化简才能大小不变?
(2)学生自己完成。指名回答,让其说说这样做的根据是什么?
(3)为什么105.0900的5左边的0不能去掉呢?(强调小数的性质中“小数的末尾的0”。)
(4)练习:下面的数,哪些“0”可以去掉?哪些¨0“不能去掉?
0.40 1.820 2.900 0.080 12.000
回答后小数末尾的0红色闪现。
问12应该去掉0后是多少?还可以怎样表示?
强调:12去掉0后,小数部分没有数,可以把小数点也去掉。
过渡:同样,应用小数的性质,我们还可以根据需要,把一个数改写成含有指定小数位数的小数
3.出示例3。
不改变数的大小,把0.2、4.08、3改写成小数部分是三位的小数。
想想可以怎么做?
(1)学生自己完成。
(2)大家这样做的根据是什么?3能不能直接在后面添0?
(3)练习:下列数如果末尾添”0“,哪些数的大小不变,哪些数的大小有变化?
3.4 18 0.06 700 3.0 4.90
四、全课小结
1.这节课你学到了哪些知识?有哪些收获?
2.现在知道刚才的标价为什么相等吗?
五、作业设计
教科书第64页练习十第一题、第三题
板书设计:
小数的"性质
1分米=10厘米=100毫米
小数 0.1米=0.10米=0.100米 大小不变
末尾 添上“0”
末尾 去掉“0”
小数的性质:小数的末尾添上0或去掉0,小数的大小不变。
教学内容:
苏教版义务教育课程标准实验教材数学五年级上册第34~35页例5、例6。
教学目标:
1.能够正确地理解小数的性质,并能够应用性质将小数化简和改写,渗透“变中有不变”的辩证观点。
2.培养学生对所学知识进行归纳概括、分析综合及灵活运用的能力,并通过自主探索、合作交流等方式,发展数学思维,培养解决问题的能力。
3.通过教学,使学生体会数学与生活的联系,激发学生学习数学的兴趣。
教学重、难点分析:
1.教学重点:通过探索,发现并理解小数的性质,运用小数的性质解决相关问题。
2.教学难点:理解小数的性质,明白小数的末尾添上0或去掉0,小数的大小不变。
教学过程:
一、谈话导入
师:同学们,我们已认识了小数,知道小数在生活中是无处不在的。(出示课件)同学们在超市里,肯定也见过很多小数吧?你能读出这些小数吗?(课件展示)这些小数有什么共同的特点?(每一个小数的末尾都有0)今天,我们就来研究小数末尾的“0”。
二、探索性质
(课件出示例5)
笑笑:我买了一枝铅笔,用了0.30元。
明明:我也买了一枝这样的铅笔,只花了0.3元,比你的便宜。
笑笑:哈哈!不对,我们俩花的钱同样多。
明明:我买的铅笔就是比你的便宜。
1.引发猜测。
师:同学们,你们来当裁判,他们俩谁说的对?为什么?
生:笑笑说的对,因为0.3元=0.30元。
师:你们都认为0.3=0.30吗?
2.验证猜想。
师:先想一想,0.3和0.30为什么相等呢?然后在小组内交流一下你的想法,也可以利用老师发给你的材料(数位顺序表、两个相等的正方形)来验证一下自己的想法。
(引导学生从几个方面进行总结:①0.3元和0.30元都是3角,所以0.3元=0.30元。②利用正方形得出:0.3表示把正方形平均分成10份,取这样的3份;0.30表示把正方形平均分成100份,取这样的30份,0.3和0.30所表示的阴影部分一样大。③从计数单位来看,0.3是3个0.1,0.30是30个0.01,也可以看做3个0.1。④从数位顺序表可以看出,在3的后面添上0只改变了这个小数的意义,3所在的数位始终不变,始终表示3个十分之一,所以0.3=0.30)
师:从0.3到0.30,小数的末尾发生了怎样的变化?小数的大小发生改变吗?从0.30到0.3呢?
(板书:添上“0”、去掉“0”)
3.进一步探究。
师:是不是所有的小数末尾添上“0”或去掉“0”,小数的大小都不变呢?请试着比较一组小数:0.100、0.10、0.1。
(独立完成“试一试”,然后利用课件演示汇报)
师:你还能用其他方法说明这三个小数相等吗?
生1:1所在的数位不变,所以0.100米=0.10米=0.1米。
师:从左往右看,小数的末尾发生了怎样的变化?小数的大小呢?从右往左呢?
4.归纳总结。
师:经过这两组数的比较,你发现了什么规律呢?
生2:小数的末尾添上“0”或去掉“0”,小数的大小不变。
师:这就是我们今天学习的“小数的性质”。(板书课题)
师:你觉得这句话中,最重要的一个词是什么?
生3:末尾。
师:为什么呢?请同学们来比较下面三个数的大小。
(课件出示)想一想:0.5、0.50、0.05这三个小数的大小一样吗?
(先做“练一练”的第2题,再汇报)
生4:从图中可以看出,从0.5到0.50是在小数的末尾添上0,小数的大小不变;从0.5到0.05是在小数的中间添上0,小数的大小就变了,因为5所在的数位变了,由5个0.1变成了5个0.01,所以小数的大小发生了改变。
师:由此证明,只有在小数的末尾添上0或去掉0,小数的大小才会不变。
三、应用性质
1.化简。
师:学习了小数的性质,有什么作用呢?请同学们自学课本的例6。
(学生汇报,课件展示汇报结果)
师:根据小数的性质,去掉小数末尾的0,把小数化简。
(板书:化简)
2.改写。
师:学习小数的性质还有什么作用?独立完成“试一试”。
(生汇报改写结果)
学生试做,课件展示学生汇报的结果(如下)。
0.4=0.400 ?摇0.16=0.160?摇10=10.000
师:为什么有的添上1个0,有的添上2个0,有的添上3个0?10的右下角为什么要添上小数点?
师:这是根据小数的性质在小数的末尾添上0,把小数改写成指定位数的小数。(板书:改写)
四、练一练
1.完成书上第35页“练一练”的第1题。
2.游戏:你能只动三笔,使7、70、700、7000这四个数相等吗?
五、课堂小结(略)
教后反思:
1.基于生活,充分尊重学生的生活经验。
《数学课程标准》指出:“数学教学要基于学生生活,密切联系实际,让学生体验数学从生活中来的过程。”本节课的教学内容,对学生来讲并不陌生,也不困难,因为学生在生活中接触过很多小数。本节课,注重从学生熟悉的生活环境中提取大量素材,让学生尝试从中发现小数的性质,并根据生活实际理解和应用小数的性质,实现把学生的生活经验数学化。
这种种的设计,都是让学生从数学的视角去观察生活、思考问题,充分地体会到了数学与现实生活的密切联系,感受到了学习数学的价值和意义。
2.变静为动,创造性地使用教材。
教师不仅应该是教材的使用者,更应该是教材的建设者和开发者。本节课的教学,既尊重了教材的编写意图,又根据需要,变静为动,对教材多处进行了优化处理。例如,教材的主题图,是两个小朋友笔单价和橡皮单价的对话,把学生带入了自己熟悉的情境中,很好地揭示了本节课的主题,但它是静态的。为了更好地激发学生的学习兴趣和调动学生的积极性,课件中每个信息都是动态地逐步出示,两个小朋友的对话也配了音。这样,使主题图更加生动,激发了学生的探究欲望。
3.尊重学习主体,让学生经历学习过程。
本节课教学更多地关注学习过程的经历和体验,引导学生沿着“猜想——验证——总结——应用”的轨迹去探索、去发现、去创造。
本节课的教学难点是让学生理解为什么小数的末尾添上0或去掉0,小数的大小不变。针对这一难点,教师没有反复地去讲解,而是让学生在学习过程中逐渐发现。首先,引领学生从生活中提取数学素材,然后以学习小组为单位,充分利用手中的学习材料,从不同角度去验证猜想,总结出小数的性质,最后再把性质运用到生活之中。在整个学习过程中,教师充分相信学生,放手让学生自己去发现、去总结,学生的积极性和主动性得到了很大的提高,思维空前活跃,课堂气氛很融洽,真正做到了师生之间的平等对话与交流。
4.关注生成,让教学真实有效。
课堂教学中的生成,往往能真实地反映出学生当时的思维状态、认知起点和困惑等等。因此,教师要充分关注生成,合理利用与引导学生的生成,课堂教学才能更加真实有效。
教学内容
人教课标版小学四年级下册第38、39页的内容:小数的性质
学情分析
小数的性质是义务教育课程标准实验教科书四年级下册第38、39页的内容。是在学生学习了“小数的意义”的基础上深入学习小数有关知识的开始。掌握小数的性质,不但可以加深对小数意义的理解,而且为后面的小数的大小比较、小数四则计算打下坚实的基础。学生对于整数的知识已经有了较多的了解,对于整数的末尾添上“0”或者去掉“0”,会引起整数大小的变化有了一定的认识。但小数的性质却与整数不一样,在小数的末尾添上0或者去掉“0”,小数的大小不变,因此,整数的这部分知识,会对小数性质的学习产生负面的影响。
教学目标
知识与技能:让学生在自主探究、合作交流中理解和掌握小数的性质,知道化简小数和改写小数的方法。
过程与方法:培养学生观察、比较、抽象和归纳概括的能力。
情感态度与价值观:激发学生积极主动的合作意识和探索精神,体验数学问题的探究性和挑战性,从而激发学习数学的兴趣,积极主动的参与数学活动。
教学重难点
重点:理解和掌握小数性质的含义。
难点:小数基本性质归纳的过程。
教法与学法
1、利用迁移规律,让学生从形象思维逐步过渡到抽象思维,通过直观推理、自主探究、合作交流让学生理解和掌握小数的性质,提高学生运用知识进行判断、推理的能力。
2、让学生体验数学问题的探究性和挑战性,激发学习数学的兴趣,主动参与教学活动。
3、培养学生共同合作,相互交流的学习方法。
教学准备
收集的标签直尺和纸条
教学过程
一、出示图片,导入新课
1、师:星期天老师去超市观察到每件商品的下面都有一个标价签记录商品的价格,同学们看一看,这两件商品的价格是多少呢?
生:2.50元,师:是多少钱呢?生:2元5角。(2.5元)
生:8.00元。师:是多少钱?生:8元。
师:为什么2.5元末尾添个0大小不变;8元与8.00元有什么关系呢?这节课我们就一起来研究这方面的知识。
板书课题:小数的性质
设计意图:联系生活实际,达到知识的迁移。
二、提出问题、探索新知
1.出示例1:下面请同学们利用直尺和桌面上的三张纸条分别量出0.1米,0.10米和0.100米长的纸条,各打上记号。各小组合作共同完成。
2、各小组汇报:结合学生回答,教师板书:
0.1米是1/10米,就是1分米
0.10米是10/100米,就是10厘米
0.100米就是100/1000米,就是100毫米
因为1分米=10厘米=100毫米
所以0.l米=0.10米=0.100米
教师小结:这三个数量虽然各不相同,但表示大小相等.
设计意图:学生根据小数的意义,从“0.l米、0.10米、0.100米”出发研究问题。在问题得以解决的过程中,学生锻炼了运用已有知识解答新问题的能力,培养了运用数学知识的意识。
3、观察比较:教师指着“0.l米=0.10米=0.100米”这个等式,标出思考箭头先让学生从左往右观察、比较,你们发现了什么?
根据学生的回答板书:在小数的末尾添上0,小数的大小不变。再标出思考箭头,让学生从右往左观察,又发现什么规律,补充板书:小数的末尾去掉“0”。
教师强调:我们如果遇到小数末尾有“0”的时候,一般可以去掉末尾的“0”,把小数化简.小数中间的0不能去掉.
师质疑:那整数有这个性质吗?
学生分小组讨论,并举例证明得出结论。
(师强调出小数与整数的区别)
设计意图:把静态的知识结论转化为动态的求知过程,让学生真正成为学习的主人,对所学的内容理解深刻,记忆牢固,不但知其然,而且知其所以然。同时,还培养了学生归纳概括的能力。
4、练一练:课前商品的价格
(1)出示2.5元=2.50元
8元=8.00元
师:这样写可以吗?是根据什么这样写的呢?(再次引出小数的性质)这样写有什么好处呢?(可一让我们一眼就清楚地看出商品是几元几角几分。)
5、出示例题2,引导学生自学
比较0.3和0.30的大小
(1)师:想一下你用什么办法来比较这两个数的大小呢?(给学生独立思考的时间,可以进行小组讨论合作)
(2)在方形的纸上表示出0.3和0.30,并比较它们的大小。
(3)在两个大小一样的正方形里涂色比较。
汇报结论:0.3=0.30
师质疑:小数由0.3到0.30,你看出什么变了?什么没变?你从中发现了什么?(平均分的份数变了,即小数的计数单位变了,而阴影部分的大小没有变,得出0.3=0.30。)设计意图:学生的思维从形象思维逐步过渡到抽象思维,达到突破难点的目的。放手让学生探索、验证,适时引导学生提出问题,并解决问题。
6.小数性质应用.出示卡片题
不改变数的大小,下面数中的哪些“0”可以去掉,哪些“0”不能去掉?为什么?
3.90m0.3元500m1.80元0.70m0.04元
教师强调:末尾和后面不同。
三、巩固深化,拓展思维
1.完成39页的做一做。
重点指导学生说一说为什么有些“0”不能去掉和说一说为什么有些数的末尾添上“0”,原数就发生了变化.
2.每人写几个和3.200相等的数.
设计意图:挑战自我的习题留给学生课后去完成,让学生的学习活动从课堂延伸到课后。
四、全课小结:这节课你有哪些收获?
五、布置作业.完成练习十1—3题。
[教学内容]
苏教版义务教育课程标准实验教科书五年级上册第34~35页。
[教材简析]
这部分内容结合现实的情境,通过自主观察、比较和归纳,引导学生在众多数学现象中体验并发现小数的性质。例4联系学生熟悉的“购学习用品”情境引入,激起学生进行比较的需要,再通过用不同方法对橡皮和铅笔单价的比较,使学生初步体验小数末尾添上0,小数的大小不变。“试一试”则借助直尺图使学生再次体验小数末尾去掉0,小数的大小不变。在此基础上,引导学生综合、归纳两组等式的特点,从而发现小数的性质。例5及相应的“试一试”则是突出小数性质内涵――“0”在小数末尾的专项教学,同时学习应用小数的性质,进行化简和改写小数的方法。
[教学目标]
1、使学生在现实的情境中通过猜想、验证以及比较、归纳等活动,理解并掌握小数的性质,会应用小数的性质改写小数。
2、使学生经历从日常生活现象中提出问题并解决问题的过程,通过自主探索、合作交流等方式,积累数学活动的经验,发展数学思考的能力。观察、比较、抽象概括能力,
3、在活动中使学生初步感悟数学知识间的内在联系,同时渗透事物在一定情况下可以相互转化的观点。
[教学过程]
一、复习旧知,引发冲突
1、谈话:数的王国里有许多神奇的现象,如不起眼的“0”,表示什么意思?(一个也没有)别小看这个“0”,它的作用可大着呢。看,在整数5的末尾添上一个0,这个数发生了什么变化?添上两个0呢?(屏幕依次出示一组数:5,50,500)
我们再从右往左看,500去掉一个0,发生了什么变化?
2、引发猜想:如果在一个小数的末尾添上0,或者去掉0,小数的大小又会怎样?猜猜看。(学生自由发表,可能出现两种意见:
①受整数末尾添“0”的思维定势,认为小数大小也会随之变化。
②由钱数等生活经验认为小数大小不变)
谁的猜想正确?我们可以用什么方法证明?(举些例子)
[设计意图:从对“整数末尾添上或去掉‘0’引起大小变化”的思考,进而引导学生关注小数末尾的0,引发猜想。此时的猜想是一种直觉思维,可能两种意见谁也说服不了对方,目的在于通过冲突激起学生进一步探索的欲望。]
二、实例作证,体验小数性质的合理
1、创设情境,初步感知
(1)创设购物情境:两位同学去书店购买学习用品后在交流购物情况:小明:“我买1枝铅笔用了0.3元。”小芳:“我买1块橡皮用了0.30元。”你从图中能获取哪些信息?
(2)提出问题:橡皮和铅笔的单价相等吗?为什么?你能想办法证明吗?先独立思考,有想法后可以和同桌交流。
(3)学生活动后组织全班交流,可能出现如下的比较方法:
①用具体钱数解释:0.3元和0.30元都是3角,所以0.3元=0.30元。
②用图表示:把两个同样大小的正方形分别平均分成10份、100份,其中的3份、30份分别用0.3、0.30表示。因为阴影部分大小相同,所以0.3=0.30。
③结合计数单位理解:0.3是3个0.1,也就是30个0.01,所以0.3=0.30。
(4)感知与体验:同学们想出了多种办法都能证明0.3元=0.30元,说明这两个小数确实相等。
教师引读0.3元=0.30元,从左往右看,小数末尾有什么变化?小数的大小怎样?你有了什么想法?使学生初步体验小数的末尾添上“0”,小数的大小不变。
[设计意图:这里选取学生熟悉的购物题材作为研究对象,一方面学生凭借一定的生活经验,能够判断0.3元=0.30元,“知其必然”。同时,学生借助已有的知识经验又能“知其所以然”,运用多种方法自主验证0.3元=0.30元。在此基础上通过引读体验,使学生初步感悟小数末尾添0与小数大小的关系。]
2、试一试,加深体验
谈话:看来刚才的猜想二有些道理。当然,仅仅用一个例子证明是不够的,还得找些其他例子进一步研究,看看这是否是普遍的规律。
(1)出示一把有刻度的学生尺,你能比较出0.100米、0.10米、0.1米的大小吗?给学生一定的思考时间。部分学生可能有困难,随后出示书上填空,看图填一填,再比较。
(2)交流比较方法:说说你是怎样比较的?
可能出现如下的方法:①结合直尺图说明:由100毫米=10厘米=1分米,得到0.100米=0.10米=0.1米。你还能用其它方法来证明吗?②用计数单位说明。0.100是100个0.001,就是10个0.01,也就是1个0.1。
(3)感知与体验:教师引读:0.100米=0.10米=0.1米,小数是相等的。从左往右看,小数末尾怎样变化,小数大小也不变?
使学生初步体验小数的末尾去掉“0”,小数的大小不变。
[设计意图:“为什么去掉0.100米末尾的一个0、两个0,小数依然相等?”这是学生思维受阻、理解较为困难的地方。借助直观的直尺和小数计数单位等相关已有经验,学生能发现0.100米、0.10米和0.1米之间的关系,这就为小数性质合理性的体验提供了另一素材。通过引读使学生体验小数末尾去掉0和小数大小的关系。这就为下一环节的总结概括作了必要的认知准备。]
3、总结体验,概括表达
上面的两个例子,小数大小都没变。从左往右看,小数在怎样的情况下,大小是不变的?把你的想法和小组里的同学说一说。
小组交流后组织全班交流。在此基础上引导学生把两次的发现用一句话概括:小数的末尾添上“0”或去掉“0”,小数的大小不变。这就是小数的性质。
刚才我们是从左往右观察,得到了小数的性质。那么从右往左看,你又能发现什么?
4、突出“末尾”,体验内涵
牛奶2.80元
面包4.00元
汽水3.05元
火腿肠0.65元
(1)小强去超市购买了一些物品,得到一张购物单(出示例5):
合计10.50元
请你帮他找一找:这些物品的价格中哪些“0”可以去掉?
在书上填一填。
学生完成后进行全班交流:
①2.80元=2.8元。说说你是怎样想的。
想法一:根据小数的性质,直接去掉末尾的“0”。
得到2.80元=2.8元。你还能用其它方法证明吗?
想法二:2.80元是2元8角,2.8元也是2元8角。
想法三:2.80是2个一和8个十分之一,2.8也是2个一和8个十分之一。
谈话:根据想法二和想法三,都证明了2.80元末尾的“0”能去掉,看来小数的性质确实是合理的。
②3.05元中的“0”能去掉吗?为什么?可以结合具体数量解释:3.05元是3元零5分,如果去掉“0”,3.5元是3元5角,两者不等。也可以结合计数单位解释。
由此看来,小数中的“0”是否都可以去掉?只有小数哪里的“0”才可以去掉?(只有去掉小数末尾的“0”,小数的大小才不变。)
(2)口答练习六第1题:下面各数中的哪些“0”可以去掉?哪些“0”不可以去掉?为什么?
[设计意图:在知识的获得上,学生最相信的是自己在学习过程中的亲身经历与体验。小数的性质实质上是说明小数在什么情况下是相等的.,学生在例题以及试一试的多个数学现象中已经有了一定的体验及发现。然而,添上或者去掉的“0”应在小数的“末尾”,这种体验尚未深刻。因此,这一层次通过突破重点与难点的专项教学――辨析具体实例中哪些“0”可以去掉,旨在让学生更加深刻地体验小数性质内涵――突出小数“末尾”。]
三、解决问题,体验小数性质的应用
1、小数的化简
根据小数的性质,2.80元就等于2.8元,所以我们通常可以去掉小数末尾的“0”,把小数化简。
化简下面的小数:0.4000.0801.75029.00
学生独立思考,口答。提问:化简0.080,“0”都能去掉吗?
2、小数的改写
试一试:不改变数的大小,把下面各数写成三位小数。0.43.1610
学生独立思考,在书上填空。
完成后交流结果,并提问:改写这三个数时应用了什么知识?为什么给三个数添上的“0”的个数不同?“10”是整数,怎样把它改写成大小不变的三位小数?
小结:去掉小数末尾的“0”化简小数,或者在小数末尾添上“0”增加小数部分的位数,这些都是应用小数的性质,在不改变小数大小的前提下进行的。
如果把整数改写成小数的形式,必须在整数个位右下角点上小数点,再添上0。
四、巩固应用,深化小数性质的体验
1、完成练一练第1题。观察数轴图,照样子在方框里填上合适的小数。
完成后观察每组中的两个数,你有什么发现?
0.1和0.10、0.2和0.20、0.3和0.30……每组里的两个数对应于数轴上的同一个点,说明小数的性质确实是存在的。0.1=0.10,数轴上这个点还可以用哪些小数来表示?
2、完成练一练第2题。先涂色表示各小数,再比一比。
交流时结合涂色部分说说涂色时的感受:为什么0.6和0.60的大小相同,而0.6和0.06的大小不等?
教师就图小结:如果添上或去掉的“0”在小数末尾,不会改变原来数的大小;如果添上或去掉的“0”不是在小数末尾,小数的大小随之发生变化。
[设计意图:这两题都是数形结合,借助直观的数轴图使学生清晰地看到两个数对应于数轴上的同一个点,通过正方形涂色部分的大小比较又能使学生直观地感受到添上或去掉的“0”必须在小数末尾,突出了小数性质的内涵。直观的形能帮助学生体验、理解抽象的数。]
3、完成练习六第2题。学生练习后提问:为什么不把0.018和0.180连起来?
4、完成练习六第4题。学生独立改写。
交流时重点指导0.5400,80的改写方法。使学生认识到:应用小数的性质改写小数,有的需要去掉小数末尾“0”,也有的需要在末尾添“0”增加小数部分的位数。
5、完成练习六第5题。
提问:在哪些地方看到过小数末尾添上0的数?(商场的标价上)
学生独立改写后交流。
谈话:用“元”作单位表示钱数时,因为人民币“元”后面还有“角”、“分”,所以钱数一般改写成两位小数。比较一下,用“元”作单位改写成两位小数后有什么感觉?(这样写,不但没有改变小数的大小,而且让顾客很清楚地知道是几元几角几分。)
五、总结延伸
通过本课的学习,你有什么收获和大家分享?我们是怎么探索小数的性质的?通过对整数末尾0的变化的研究,我们提出了小数末尾0变化引起变化的猜想,并通过生活的实例发现了小数性质的存在。
0的作用大不大?通过在小数末尾添上或者去掉0,我们就给一个小数找到了许多大小不变的朋友。其实,数学王国里有许多奇妙的现象,等着我们不断去探索、发现。
[教学内容]
苏教版义务教育课程标准实验教科书五年级上册第34~35页。
[教材简析]
这部分内容结合现实的情境,通过自主观察、比较和归纳,引导学生在众多数学现象中体验并发现小数的性质。例4联系学生熟悉的“购学习用品”情境引入,激起学生进行比较的需要,再通过用不同方法对橡皮和铅笔单价的比较,使学生初步体验小数末尾添上0,小数的大小不变。“试一试”则借助直尺图使学生再次体验小数末尾去掉0,小数的大小不变。在此基础上,引导学生综合、归纳两组等式的特点,从而发现小数的性质。例5及相应的“试一试”则是突出小数性质内涵—— “0”在小数末尾的专项教学,同时学习应用小数的性质,进行化简和改写小数的方法。
[教学目标]
1、使学生在现实的情境中通过猜想、验证以及比较、归纳等活动,理解并掌握小数的性质,会应用小数的性质改写小数。
2、使学生经历从日常生活现象中提出问题并解决问题的过程,通过自主探索、合作交流等方式,积累数学活动的经验,发展数学思考的能力。观察、比较、抽象概括能力。
3、在活动中使学生初步感悟数学知识间的内在联系,同时渗透事物在一定情况下可以相互转化的观点。
[教学过程]
一、复习旧知,引发冲突
1、谈话:数的王国里有许多神奇的现象,如不起眼的“0”,表示什么意思?(一个也没有)别小看这个“0”,它的作用可大着呢。看,在整数5的末尾添上一个0,这个数发生了什么变化?添上两个0呢?(屏幕依次出示一组数:5,50,500)
我们再从右往左看,500去掉一个0,发生了什么变化?
2、引发猜想:如果在一个小数的末尾添上0,或者去掉0,小数的大小又会怎样?猜猜看。(学生自由发表,可能出现两种意见:
①受整数末尾添“0”的思维定势,认为小数大小也会随之变化。
②由钱数等生活经验认为小数大小不变)
谁的猜想正确?我们可以用什么方法证明?(举些例子)
二、实例作证,体验小数性质的合理
1、创设情境,初步感知
(1)创设购物情境:两位同学去书店购买学习用品后在交流购物情况:小明:“我买1枝铅笔用了0.3元。”小芳:“我买1块橡皮用了0.30元。”你从图中能获取哪些信息?
(2)提出问题:橡皮和铅笔的单价相等吗?为什么?你能想办法证明吗?先独立思考,有想法后可以和同桌交流。
(3)学生活动后组织全班交流,可能出现如下的比较方法:
①用具体钱数解释:0.3元和0.30元都是3角,所以0.3元=0.30元。
②用图表示:把两个同样大小的正方形分别平均分成10份、100份,其中的3份、30份分别用0.3、0.30表示。因为阴影部分大小相同,所以0.3=0.30。
③结合计数单位理解:0.3是3个0.1,也就是30个0.01,所以0.3=0.30。
(4)感知与体验:同学们想出了多种办法都能证明0.3元=0.30元,说明这两个小数确实相等。
教师引读0.3元=0.30元,从左往右看,小数末尾有什么变化?小数的大小怎样?你有了什么想法?使学生初步体验小数的末尾添上“0”,小数的大小不变。
2、试一试,加深体验
谈话:看来刚才的猜想二有些道理。当然,仅仅用一个例子证明是不够的,还得找些其他例子进一步研究,看看这是否是普遍的规律。
(1)出示一把有刻度的学生尺,你能比较出0.100米、0.10米、0.1米的大小吗?给学生一定的思考时间。部分学生可能有困难,随后出示书上填空,看图填一填,再比较。
(2)交流比较方法:说说你是怎样比较的?
可能出现如下的方法:
①结合直尺图说明:由100毫米=10厘米=1分米,得到0.100米=0.10米=0.1米。你还能用其它方法来证明吗?
②用计数单位说明。0.100是100个0.001,就是10个0.01,也就是1个0.1。
(3)感知与体验:教师引读:0.100米=0.10米=0.1米,小数是相等的。从左往右看,小数末尾怎样变化,小数大小也不变?
使学生初步体验小数的末尾去掉“0”,小数的大小不变。
3、总结体验,概括表达
上面的两个例子,小数大小都没变。从左往右看,小数在怎样的情况下,大小是不变的?把你的想法和小组里的同学说一说。
小组交流后组织全班交流。在此基础上引导学生把两次的发现用一句话概括:小数的末尾添上“0”或去掉“0”,小数的大小不变。这就是小数的性质。
刚才我们是从左往右观察,得到了小数的性质。那么从右往左看,你又能发现什么?
4、突出“末尾”,体验内涵
牛奶 2.80元
面包 4.00元
汽水 3.05元
火腿肠0.65元
(1) 小强去超市购买了一些物品,得到一张购物单(出示例5):
合计 10.50元
请你帮他找一找:这些物品的价格中哪些“0”可以去掉?
在书上填一填。
学生完成后进行全班交流:
①2.80元=2.8元。说说你是怎样想的。
想法一:根据小数的性质,直接去掉末尾的“0”。
得到2.80元=2.8元。你还能用其它方法证明吗?
想法二:2.80元是2元8角,2.8元也是2元8角。
想法三:2.80是2个一和8个十分之一,2.8也是2个一和8个十分之一。
谈话:根据想法二和想法三,都证明了2.80元末尾的“0” 能去掉,看来小数的性质确实是合理的。
②3.05元中的“0”能去掉吗?为什么?可以结合具体数量解释:3.05元是3元零5分,如果去掉“0”,3.5元是3元5角,两者不等。也可以结合计数单位解释。
由此看来,小数中的“0”是否都可以去掉?只有小数哪里的“0”才可以去掉?(只有去掉小数末尾的“0”,小数的大小才不变。)
(2)口答练习六第1题:下面各数中的哪些“0”可以去掉?哪些“0”不可以去掉?为什么?
三、解决问题,体验小数性质的应用
1、小数的化简
根据小数的性质, 2.80元就等于2.8元,所以我们通常可以去掉小数末尾的“0”,把小数化简。
化简下面的小数:0.400 0.080 1.750 29.00
学生独立思考,口答。提问:化简0.080,“0”都能去掉吗?
2、小数的改写
试一试:不改变数的"大小,把下面各数写成三位小数。0.4 3.16 10
学生独立思考,在书上填空。
完成后交流结果,并提问:改写这三个数时应用了什么知识?为什么给三个数添上的“0”的个数不同? “10”是整数,怎样把它改写成大小不变的三位小数?
小结:去掉小数末尾的“0”化简小数,或者在小数末尾添上“0”增加小数部分的位数,这些都是应用小数的性质,在不改变小数大小的前提下进行的。
如果把整数改写成小数的形式,必须在整数个位右下角点上小数点,再添上0。
四、巩固应用,深化小数性质的体验
1、完成练一练第1题。观察数轴图,照样子在方框里填上合适的小数。
完成后观察每组中的两个数,你有什么发现?
0.1和0.10、0.2和0.20、0.3和0.30……每组里的两个数对应于数轴上的同一个点,说明小数的性质确实是存在的。0.1=0.10,数轴上这个点还可以用哪些小数来表示?
2、完成练一练第2题。先涂色表示各小数,再比一比。
交流时结合涂色部分说说涂色时的感受:为什么0.6和0.60的大小相同,而0.6和0.06的大小不等?
教师就图小结:如果添上或去掉的“0”在小数末尾,不会改变原来数的大小;如果添上或去掉的“0”不是在小数末尾,小数的大小随之发生变化。
3、完成练习六第2题。学生练习后提问:为什么不把0.018和0.180连起来?
4、完成练习六第4题。学生独立改写。
交流时重点指导0.5400,80的改写方法。使学生认识到:应用小数的性质改写小数,有的需要去掉小数末尾“0”,也有的需要在末尾添“0”增加小数部分的位数。
5、完成练习六第5题。
提问:在哪些地方看到过小数末尾添上0的数?(商场的标价上)
学生独立改写后交流。
谈话:用“元”作单位表示钱数时,因为人民币“元”后面还有“角”、“分”,所以钱数一般改写成两位小数。比较一下,用“元”作单位改写成两位小数后有什么感觉?(这样写,不但没有改变小数的大小,而且让顾客很清楚地知道是几元几角几分。)
五、总结延伸
通过本课的学习,你有什么收获和大家分享?我们是怎么探索小数的性质的?通过对整数末尾0的变化的研究,我们提出了小数末尾0变化引起变化的猜想,并通过生活的实例发现了小数性质的存在。
0的作用大不大?通过在小数末尾添上或者去掉0,我们就给一个小数找到了许多大小不变的朋友。其实,数学王国里有许多奇妙的现象,等着我们不断去探索、发现。
教学目标:
1、利用迁移规律,让学生从形象思维逐步过渡到抽象思维,通过直观推理、自主探究、合作交流让学生理解和掌握小数的性质,提高学生运用知识进行判断、推理的能力。
2、让学生体验数学问题的探究性和挑战性,激发学习数学的兴趣,主动参与教学活动。
教学重难点:
掌握小数性质的含义;小数性质归纳的过程
教学过程:
一、创设情境,提出猜想
1、师:课前老师让同学们去商场、超市观察商品的标价签。
生:一块橡皮2.00元,师:是多少钱呢?
生:2元。
生:一本本子3.50元。师:是多少钱?
生:3元5角
师:老师看到超市里一种西瓜的单价是1.20元,同样的西瓜水果摊上写的是1.2元,哪儿的单价贵呢?
师:为什么1.2元末尾添个0大小不变呢?究竟可以添几个零呢?这节课我们就来研究这一方面的知识。
2、利用米尺,找等量关系。
看米尺写出:1分米=0.1米,10厘米=0.10米,100毫米=0.100米。
因为1分米=10厘米=1000毫米,所以0.1米=0.10米=0.100米。
改写成用米作单位表示后,实际长度有没有变化?(没有变化)说明什么?(三个数量相等)
师:由此,你发现了什么规律?
二、探索新知 验证猜想
为了验证我们的这个结论,我们来做一个实验。
1、比较0.30与0.3的大小
2、师:想一下你用什么办法来比较这两个数的大小呢?
3、生1:在两个大小一样的正方形里涂色比较。
课件出示百格图,涂30格阴影部分,师:把1个正方形平均分成几份?阴影部分用分数怎样表示?用小数怎样表示?
课件演示:在百格图里去掉10条线,右图把同样的正方形平均分成几份?阴影部分用分数怎样表示?用小数怎样表示?
从左图到右图有什么变了,什么没变?(份数变了,正方形的大小和阴影面积的大小没变)
4师:0.30与0.3相等,证明刚才这个结论是对的。
5生2:从数位顺序表上可以看出,在小数的末尾添零或是去零,其余的数所在数位不变,所以小数的大小也就不变。
判断:小数点的后面添上0或者去掉0,小数的大小不变。
星期天小明帮妈妈看店,一位小朋友看重一包标价7.09元的薯片,小明说我学过小数的基本性质,小数点的后面添上0或者去掉0,小数的大小不变。你就付7.9元吧。若果是你,你会怎么办?
师:小数中间的零能不能去掉?能不能在小数中间添零?
生:不能,因为这样做,其余的数所在数位都变了,所以小数大小也就变了。
师:那整数有这个性质吗?
问:小数由0.3到0.30,你看出什么变了?什么没变?你从中发现了什么?
6、提醒注意:性质中的“末尾”跟一般说的“后面”是不同的。
教学目标:
1、利用迁移规律,让学生从形象思维逐步过渡到抽象思维,通过直观推理、自主探究、合作交流让学生理解和掌握小数的性质,提高学生运用知识进行判断、推理的能力。
2、让学生体验数学问题的探究性和挑战性,激发学习数学的兴趣,主动参与教学活动。
教学重难点:
掌握小数性质的含义;小数性质归纳的过程
教学过程:
一、创设情境,提出猜想
1、师:课前老师让同学们去商场、超市观察商品的标价签。
生:一块橡皮2.00元,师:是多少钱呢?
生:2元。
生:一本本子3.50元。师:是多少钱?
生:3元5角
师:老师看到超市里一种西瓜的单价是1.20元,同样的西瓜水果摊上写的是1.2元,哪儿的单价贵呢?
师:为什么1.2元末尾添个0大小不变呢?究竟可以添几个零呢?这节课我们就来研究这一方面的知识。
2、利用米尺,找等量关系。
看米尺写出:1分米=0.1米,10厘米=0.10米,100毫米=0.100米。
因为1分米=10厘米=1000毫米,所以0.1米=0.10米=0.100米。
改写成用米作单位表示后,实际长度有没有变化?(没有变化)说明什么?(三个数量相等)
师:由此,你发现了什么规律?
二、探索新知 验证猜想
为了验证我们的这个结论,我们来做一个实验。
1、比较0.30与0.3的大小
2、师:想一下你用什么办法来比较这两个数的大小呢?
3、生1:在两个大小一样的正方形里涂色比较。
课件出示百格图,涂30格阴影部分,师:把1个正方形平均分成几份?阴影部分用分数怎样表示?用小数怎样表示?
课件演示:在百格图里去掉10条线,右图把同样的正方形平均分成几份?阴影部分用分数怎样表示?用小数怎样表示?
从左图到右图有什么变了,什么没变?
4师:0.30与0.3相等,证明刚才这个结论是对的。
5生2:从数位顺序表上可以看出,在小数的末尾添零或是去零,其余的数所在数位不变,所以小数的大小也就不变。
判断:小数点的后面添上0或者去掉0,小数的大小不变。
星期天小明帮妈妈看店,一位小朋友看重一包标价7.09元的薯片,小明说我学过小数的基本性质,小数点的后面添上0或者去掉0,小数的大小不变。你就付7.9元吧。若果是你,你会怎么办?
师:小数中间的零能不能去掉?能不能在小数中间添零?
生:不能,因为这样做,其余的数所在数位都变了,所以小数大小也就变了。
师:那整数有这个性质吗?
问:小数由0.3到0.30,你看出什么变了?什么没变?你从中发现了什么?
6、提醒注意:性质中的“末尾”跟一般说的“后面”是不同的。
★ 苏教版小数的意义和性质教学设计
★ 新人教版小数的性质教学设计
★ 小数加减法教学设计
★ 认识小数教学设计
★ 小数的教学设计
★ 小数乘小数教学设计
★ 认识小数教学设计
★ 小数乘法教学设计
★ 说课稿的设计意图
★ 《小数乘小数》小学教学设计
标签:
上一篇: 第七届南博会共达成签约项目483个
下一篇: 最后一页